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ABSTRACT

This study presents innovative methods for solving practical challenges that occur during the 
operation of heavy diesel engines (DEs). The novelty of the method arises from the combined use of 
an artificial neural network, a single-zone DE combustion mathematical model, and data from real 
operation conditions. Using the proposed method, DE transient mode energy efficiency has been 
analysed, and the primary influencing factors have been identified: qcycl and dqcycl/dt. The adequacy 
of the method has been tested for CAT3512B-HD series engines installed on freight locomotives. The 
difference between the model results and experimental data has been 3–4%. CAT3512B-HD series DE 
transient operation studies have shown that at the low-load range of qcycl (up to 36% of nominal), the 
fuel consumption during transient operation increases by 10% compared to steady state operation. 
Transient operation efficiency is not influenced by the operation rate (dqcycl/dt) in the analysed -0.016 
to 0.016 g/s range. Near the nominal power (qcycl increases up to 0.5 g/cycle), it is necessary to limit 
the dqcycl/dt range to 0.006 g/s to avoid overexploitation of the fuel by more than 100%. The proposed 
method has been recommended for practical use in optimizing vehicle operation load cycle structure 
by adapting the engine control to the concrete operation conditions, as well as for overall efficiency 
improvement.

1 Introduction

Mathematical modelling of diesel engine (DE) per-
formance, including energy efficiency parameters, ena-
bles significant savings in the cost and time required for 
experimental preparation. Mathematical modelling meth-
ods are particularly effective for real operation condi-
tions in which implementation of experiments is difficult 
or not possible. This is primarily a result of the DE tran-
sient modes, which constitute a major factor in the opera-
tional lifetime of a vehicle (Rakopoulos, Giakoumis 2009). 
Simulation of DE steady state operational modes with a 
wide range of models is well adapted and has been widely 
applied in DE research (Merker et al. 2006; Rakopoulos, 
Giakoumis 2009; Rapalis et al. 2013; Kumar et al. 2013). 
However, modelling DE transient operational modes is 
complicated owing to multiple changes in the parameters 
of the operational processes occurring in the DE cylinders 
and systems. In many cases, these parameters still have no 

accurate analytical description and are difficult to validate 
properly with experiments.

However, current stringent environmental regulations 
(Zbarcea et al. 2016; Brand 2016) along with internation-
al agreements and conventions (White paper 2011) have 
caused an increased interest in DE transient modes. The 
determination, evaluation, and optimisation of energy 
performance under DE operational conditions to improve 
energy efficiency are crucial for addressing various envi-
ronmental issues (Brand 2016).

The modelling of a DE operation in the transient load-
ing mode has been studied widely by C. D. Rakopoulos. A 
mathematical model has been proposed for a single DE 
cylinder without a turbocharger, taking into account en-
gine friction, inertia, and dynamic parameters of the high-
pressure fuel pump and regulator (Rakopoulos, Giakoumis 
1998; 2006). This model has then been improved by 
adapting it for a 6-cylinder DE with a turbocharger. The 
resulting model has been exceptional as it was able to 
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simulate the performance of a multi-cylinder engine 
(Rakopoulos, Giakoumis 2004; Rakopoulos et al. 1998). 
This model has since been subject to further improve-
ment (Rakopoulos, Giakoumis 2006; 2006). An automo-
tive DE mathematical modelling has been carried out by G. 
Zhang and others (Zhang et al. 1997), who has improved 
the mathematical model created by D. N. Assanis (Assanis 
1985) by supplementing it with an evaluation of the influ-
ence of engine dynamics (Zhang et al. 1997). Overall, most 
attention in the literature has been paid to filling and emp-
tying based and semi-linear models owing to their high 
calculation speeds (Rakopoulos, Giakoumis 2006; Winkler 
2008; Yelvington 2013). 

Recently, specialised digital modelling tools for internal 
combustion engines have been used for research on tran-
sient modes, including GT-power, AVL BOOST, AVL FIRE, 
Ricardo, and OpenWam. (Yelvington 2013; Willermark, 
Smith; Winkler 2008; Florián et al. 2006). Reviewing the 
DE mathematical modelling research shows that the Vibe 
and Woschni/Anisits heat release models have been used 
effectively for these simulations (Chakrabarti, et al. 2012; 
Rakopoulos, Giakoumis 2006). This is likely owing to the 
simplicity of usage of these models and the relatively small 
amount of required initial data. In contrast, using the multi-
zone AVL, MMC, or Hiroyasu models requires detailed fuel 
supply system data that can be determined only during the 
engine design phase by dismantling the DE and conducting 
research in specialized labs (Rapalis et al. 2013). An even 
more complex application of these models would be re-
quired for research on transient loading modes.

 With more available software and improved efficien-
cy, the scope of these studies and use of these tools has 
increased (Winkler 2008; Smith; Bermúdez et al. 2011). 
Yelvington used the “Ricardo” digital modelling software 
to investigate DE operation in transient modes for creat-
ing a hybrid-electric turbocompressor. Yelvington has also 
noted that mathematical modelling software packages can 
be useful tools in the engine design process. (Yelvington 
2013; Bermúdez et al. 2011). Nüescha et al.have also used 
digital modelling tools with the aim to reduce emissions 
from hybrid (diesel–electric) vehicles during transient 
loading modes (Nüescha et al. 2014).

 N. Winkler has investigated the influence of tur-
bocharging on parameters of heavy vehicle DEs using 
GT-Power mathematical modelling tools. During that re-
search, it has been noted that forecasting turbocompres-
sor operation in transient modes is very difficult. Winkler 
has also noted that the system has been most beneficial 
during the initial phase of turbocompressor design when 
high accuracy is not required (Winkler 2008). A research 
on non-road transport DE transient modes, using math-
ematical modelling tools, has been carried out by M. Kotus, 
M. Pexa, and K. Kubin. They have conducted experimental 
tests using a non-road transport transient testing cycle, 
which has then been used as the basis for the development 
of an interpolative mathematical model of harmful emis-
sions. It has been concluded that the model has good re-
producibility, but its interpolative character may result in 

errors in certain transient modes (Kotus et al. 2005). The 
analysis of previous transient DE mathematical modelling 
studies has revealed that these models are often purpose-
fully simplified and applied only to research on a particu-
lar DE component (Bermúdez et al. 2011). These models 
may be used in design when detailed design data are avail-
able (Imamori 2011), but even in that case, long calcula-
tion times are inevitable (Imamori 2011). 

Modern engine control technologies including multi-
stage injection, variable geometry turbochargers, and 
variable valve timing improve DE performance. However, 
these systems increase the number of degrees of freedom 
in the models, and their control and definition of synergy 
effects become increasingly difficult to simulate with phys-
ical or phenomenological models. Moreover, investigation 
of transient loads complicates the research further, and 
not only the accuracy of the results, but also the increas-
ing scope of the calculations becomes problematic. In this 
context, there is a tendency to use approximations of the 
experimental data with artificial neural networks (ANN) 
(Brzozowska 2007; Ismaila et al. 2012; Taghavifar et al. 
2014; Roy et al. 2014; Manieniyana et al. 2016, Tanga et al. 
2017, Kshirsagar, Anand 2017).

Artificial neural networks are one of the most success-
ful and widely applied technologies that have appeared 
in the last two decades (Kriesel 2005; Graupe 2007). 
Neural network technologies have been recently intro-
duced for DE research (Wu et al., 2004; Florián et al. 2006; 
Brzozowska 2007; Ismaila et al. 2012; Nikzadfar K. 2014; 
Roy et al. 2014; Taghavifar et al. 2014; Manieniyana et al. 
2016; Tanga et al. 2017, Kshirsagar, Anand 2017; Gürgen 
et al. 2018; Kurtgoz et al. 2018).

The application of neural network approximation 
mechanisms and the usage of nonlinear functions in neu-
ral networks can avoid large data tables and complex cal-
culations of physicochemical processes. In addition, their 
speed and accuracy can surpass those of phenomenologi-
cal models for transient load researches. These black box 
models can define links among several single (one input 
– one output) and multiple (many inputs – many outputs) 
parameters (Kriesel 2005; Graupe 2007; Deng et al. 2011). 
This is directly applicable to transient load modelling, in 
which the common effect is determined by multiple inter-
related factors that may not be clearly apparent. Neural 
networks have been used by many engine researchers 
in order to develop mathematical models of dynamic en-
gine parameters, such as smoke exhaust or boost system 
parameters (Brahma et al., 2004; Wu et al., 2004; Galindo 
et al. 2005). A study carried out by D. Willermark and N. 
Smith, has trained a neural network based mathematical 
model that did not require large calculation resources for 
the modelling of Volvo engine operations during transient 
modes (Willermark, Smith 2009). It has also been applied 
to investigate turbocharger operation during transient 
loads (Winkler 2008). Deng et al. have used neural net-
works to investigate operation of the DE CAT C66 boost 
system. In that study, neural networks have been trained 
with experimental data. The modelling results obtained 
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from the trained neural networks have had a correlation 
factor of 0.9925 with the experimental data, and correla-
tion factors of 0.9995– 0.9999 have also been obtained for 
the analysis of exhaust gas emissions (Deng et al. 2011).

A combination of traditional numerical modelling tools 
and ANN has been used for transient mode research by K. 
Nikzadfar and A. H. Shamekhi. Their research has utilized 
the AVL BOOST internal combustion engine operation dig-
ital modelling software. To create a universal mathemati-
cal model with high calculation speeds, neural networks 
have been used to define changes in engine parameters 
and develop a mathematical model of harmful emission 
formation (Nikzadfar, Shamekhi 2014). 

Overall, most research subjects, particularly in tran-
sient operation mode, are car engines with 2–4 cylinders 
and models that are primarily focused on fuel combustion 
parameters. 

Therefore, there is a lack of research to simulate heavy 
DE transient performance. This study presents a DE tran-
sient operation modelling methodology that does not re-
quire the use of detailed engine parameters and provides 
suitable accuracy for transient operation modes. The de-
veloped methodology can be used by researchers and rail 
operation companies for the operation optimisation and 
adaptation to concrete operation conditions. Mathematical 
modelling results have been obtained for a locomotive se-
ries CAT3512B-HD DE during transient operation modes. 
Mathematical modelling with the BOOST AVL software 
package for a steady-state model of the CAT3512B-HD en-
gine has been carried out in a previous study (Lebedevas 
et al. 2015). This model has been applied parallel with an 
ANN tool in this study, and this has become the basis for 
the determination and analysis of energy efficiency pa-
rameters in transient modes. The structure of this paper 

has no traditional “Methodology” chapter, as the method-
ology of mathematical modelling research is an objective 
of the research itself. The measurement of locomotive DE 
experimental energy parameters and processing algo-
rithms have been described in detail in previous publi-
cations (Rapalis, Lebedeva 2014; Lebedevas et al. 2015; 
Rapalis et al. 2016).

2. Methodology and Results

2.1 Selection and Adaptation of Transient Load 
Mathematical Modelling

A primary advantage of using artificial neural networks 
in this study is the possibility to use data collected during 
trips. The ANN multi-layer perceptron method has been 
used for data processing. This is one of the most popu-
lar ANNs, and it is able to solve both simple and complex 
tasks. The multi-layer network structure consists of lay-
ers connected in series, where the inputs of each layer of 
neuron outputs are linked to the neurons in the previous 
layer, and the outputs are linked to the neurons of the 
next layer. Depending on the network complexity, signals 
are summed multiple times and transformed nonlinearly 
until complex concepts have been obtained using the in-
formation given by the ANN source data to generate deci-
sions for further neural network work (Studenikin 2005; 
Rawlins 2005; Kriesel 2005; Graupe 2007; Nielsen 2016).

The development of an artificial neural network begins 
with the selection of a neural network, source data prepa-
ration, and training of the network. The neural network in 
this study has employed four main parameters reflecting 
the engine system status, as well as parameters which are 
not directly measured (Fig. 1).

Influencing non-measurable 
parameters

Measurable parameters 
used for training

Multi-Layer perceptron 
ANN training

Model result – transient operation 
influence parameter

    

Pel, kW (electric power) 
 

n, min-1 (engine speed) 
 

qcycl, g (injected fuel) 

dqcycl/dt, g/s (cyclic fuel 
portion variation speed)

X op, (relative operational 
parameter) 
 

Engine inertia forse 
 

 

ECU (regulator) behaviour 

ECU (regulator) algorythm 

Engine`s ef�iciency factor 

External control signal 

Other... 

Ef�ic. increasing potential 

Arti�icial 
neural 
network 

X ep=f(n, dqcycl/dt;Pel) 
 

Train weight and inertia

Fig. 1 General Diagram of Neural Network Based Mathematical Modelling with Unsteady Load Parameters
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To allow for practical application of the research re-
sults, both in the development of operational load cycle 
structures for vehicles and in the adaptation of engine 
control unit (ECU), parameter settings for certain DE op-
eration conditions, a comparative analysis and generaliza-
tion have been conducted for the experimental research 
data. This analysis has been performed by determining the 
relationship between the CAT3512B-HD DE operational 
fuel consumption and dynamic factors of the transient op-
erational modes as follows: Gf=f(qcycl(dqcycl/dt)).

Five parameters have been selected: the first three 
parameters are intended to describe the engine state at a 
given time, while the cyclic portion variation speed is in-
tended to estimate the engine state steadiness at a given 
time, and xop is intended to evaluate the deviation of a 
studied parameter from the steady state value (steady 
state values have been obtained as described in an earlier 
work (Lebedevas et al. 2015)).

• Pel (kW) – electric power
• n (min-1) – engine revolution speed
• qcycl – cyclic fuel portion
• dqcycl/dt – cyclic fuel portion variation speed
• Xop – studied relative operational parameter

A regression function has been selected for the model, 
and data from several trips with the best correlation to the 
rheostat test data have been selected for network training. 
The neural network have been trained with engine opera-
tion data from a 24 h period, during which trip data have 
been recorded every 5.5 s. The minimum and maximum 
number of hidden layers (3 and 10, respectively) have 
been set for the automated artificial network selection al-
gorithm (Statistica ANN). Data intended for training have 
constituted 80% of the array volume, while the remaining 
20% have been used for checking the results. ANN results 
for the relative fuel consumption, xGf, and electric power, 
xPel, during transient loads are shown in Figs. 2 and 3, 
respectively. 

A comparison of the results obtained with the neu-
ral network and the data collected during operation has 
shown a high concordance rate (determination factor R2 
∈ [0.90; 0.99]). These have results demonstrated the ac-
ceptable accuracy of the method for investigating fuel con-
sumption parameters, and, with some discrepancies, for 
turbocharge parameters. Considering these results, it can 
be concluded that the training of the neural network has 
been successful, and the developed network is capable of 

   
Fig. 2 Comparison of ANN Model and Experimental Results for Relative Fuel consumption, xGf 

   
Fig. 3 Comparison of ANN Model and Experimental Results for Electric Power, xPel 
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2.2 Use of ANN-supplemented BOOST AVL Model

As discussed above, the BOOST internal combustion 
engine mathematical modelling software is capable of 
modelling both steady and transient load modes. However, 
the data scope required to prepare a transient load model 
will often exceed that available to engine fleet operators or 
researchers. Moreover, the model complexity will unavoid-
ably also lead to long calculation durations. An alternative 
method could be the creation of a supplemental model 
(Fig. 5). 

The BOOST software structure provides the capability 
to include additional user models using MATLAB-DLL files 
created in the Matlab Simulink environment. The creation 
of a MATLAB add-on and its inclusion in a BOOST model 
is not included in the scope of the current work (add-on 
creation and its inclusion in BOOST software has been 
planned for a future research). However, the theoreti-
cal basis for an additional model development has been 
established and the results obtained by recalculating the 
BOOST software modelling results using the same method, 
as shown in Fig. 5.

 

 

 

 

a)

b)

Fig. 4 Relationship between xPel and xGf versus qcycl and dqcycl/dt

modelling values of xop in the entire range of engine loads 
and speeds, including transient load modes. Figure 4a and 
4b (xGf and xPel) shows a generalized relationship between 
the impact factors and qcycl and dqcycl/dt (ignoring varia-
tions in the engine load and speed). 

These results have shown a negative impact of increas-
ing engine dynamics on the energy parameters. As the 
values get farther from dqcycl/dt=0, the values of xGf and xPe 
deviate from their steady operational mode values. This 
is particularly easy to observe in the xGf results in Fig. 4a, 
where the cyclic portion increasing or decreasing in speed 
causes a significant increase in the hourly fuel consump-
tion. At a cyclic fuel injection portion qcycl=0.2 g/cycl, the 
cyclic portion variation of -0.016 g/s to 0.016 g/s varies 
in the range of <1 to <2. However, when the initial cyclic 
portion increases to 0.5 g/cycl, while dqcycle/dt increases 
to 0.006 g/s or decreases to -0.006 g/s, the value of xGf 
increases to values exceeding 2 starts, which indicates 
a more than doubled fuel consumption. This increase is 
higher for higher fuel portions. It should be noted, howev-
er, that these figures do not reflect the impact of the other 
two parameters, Pel and n. 

BOOST modelled load cycle 
based on steady load modes 

Transient load cycle 
characteristics 

ICE parameters  

BOOST program model 

Operation data 

Selection of transient 
load parameters 

Additional ANN-based xep 
estimation component 

Cycle variation 
rate 

Fig. 5 Structure of the BOOST Model Supplementation Scheme

One very important aspect should be noted. Taking 
into account the wide applicability of artificial neural net-
works, such a scheme could be extended to other param-
eters, not in the scope of this study, such as generation of 
harmful emissions in a cylinder or correction of heat re-
lease models for better reflection of unsteady load modes, 
which has also been confirmed by scientists (Willermark, 
N. Smith, Winkler 2008, etc.). Figure 6 shows data mod-
elling fragments using various algorithms. Operation val-
ues of the experimental points selected for the tests are 
presented in Table 1. These points are characterised by 
the cyclic portion and rotation speed, and are set for the 
CAT3512B-HD engine model developed in the BOOST 
software. 

The BOOST software model has estimated two of the 
studied operation parameters (Pel, Gf) based on the steady 
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load calculation model. A part of the results has been pre-
sented in Fig. 6. As the calculation has been performed by 
ignoring the impact of dynamic parameters, the BOOST 
software model results with high error correlate with the 
experiments. The source data array for the ANN math-
ematical model trained with real operation data includes 
the BOOST software model results (Pel and Gf values) and 
data obtained from the experiments (qcycl and dqcycl/dt). 
Based on the cycle dynamics parameters and BOOST mod-
el results, the ANN estimates the relative transient mode 
impact evaluation factors: xGf, xPel, Pel, and Gf; the values ob-
tained for these factors are close to the experimental data.

DE parameter modelling in the nominal and medium 
power ranges is adequate for practical application. The 
model has to be adjusted for application to low power 
range operation, although adequate mathematical models 
of such modes are consistent with locomotives. 

It is clear that the uncorrected BOOST model without 
detailed data, as discussed in Sections 1 and 2, is not suit-
able for modelling transient modes with regard to all given 
parameters. The BOOST calculation results obtained by 
introducing an ANN-based model are much closer (for Pel 
and Gf, the coincidence is very close, both to the absolute 
and relative values, as shown in Fig. 6; the errors increase 
only when the mode is close to idle and the BOOST model 
errors increase). 

On the whole, these results have shown the evidence of 
effectiveness with the introduction of necessary additional 
factors associated with the combined use of a one zone of 
a mathematical model and ANN. To achieve adequate prac-

tical application and accuracy, ANN parameters must be 
carefully selected according to the ICE ongoing processes.

3 Conclusions

The DE transient operation energy parameters for 
service mode identification and testing method have been 
developed by uniting a one zone mathematical model real-
ized in the AVL BOOST programme and an approximation 
of DE electronic control system recorded parameters with 
a multilayer perceptron artificial neural network (ANN). 
The adaptation of the method for operating locomotive 
CAT3512B DV-HD series engines has confirmed its effec-
tiveness; the error between mathematically modelled pa-
rameters and recorded values has been 3–4%. In addition, 
the main influencing transient dynamic factors have been 
identified: the fuel injection cyclic portion, qcycl, and its var-
iation speed, dqcycl/dt.

ECU rational dynamic parameters have been examined. 
For example, it has been found that DE medium and low-
load ranges of up to 36% of the nominal qcycl have had a 
fuel overconsumption range of up to 10% compared to 
the corresponding steady state value, and it has had little 
relevance to (dqcycl/dt), qcycl nom, or the qcycl range (36% 
to 100% of qcycl nom). To avoid an overuse of 100% or 
greater, it is necessary to limit the dqcycl/dt range (-0.006 
g/s<(dqcycl/dt)<+0.006 g/s). The techniques developed in 
this study are effective for optimising vehicle operating cy-
cle structure, a nd replicating the operating conditions and 
characteristics of transport infrastructure. 

Table 1 Basic Data of the BOOST and ANN Models

dqcycl/dt (g/cycl) qcycl (g/cycl) Gf (kg/h) n (min-1) Pel (kW)
-0.000987 0.510 165 900 103
-0.00967 0.456 145 884 89
-0.01039 0.399 125 870 73
-0.01063 0.340 105 857 59
-0.01086 0.280 85 841 46
-0.01143 0.217 65 827 32

    
Fig. 6 Engine Power (a), and Fuel Consumption (b), Calculated by Using the BOOST Model without an Add-on, BOOST Model with an add-on, 

and Measured during Actual Operation
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